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Summary

Model selection is an important part of any statistical analysis, and indeed is
central to the pursuit of science in general. Many authors have examined this
question, from both frequentist and Bayesian perspectives, and many tools
for selecting the “best model” have been suggested in the literature. This
paper evaluates the various proposals from a decision—theoretic perspective,
as a way of bringing coherence to a complex and central question in the field.
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1 Introduction

Much of modern scientific enterprise is concerned with the question of model choice.
An experimenter or researcher collects data, often in the form of measurements on many
different aspects of the observed units, and wants to study how these variables affect some
outcome of interest. Which measures are important to the outcome? Which aren’t? Are
there interactions between the variables that need to be taken into account?

Statisticians are also naturally involved in the question of model selection, and so it is
should come as no surprise that many approaches have been proposed over the years for
dealing with this key issue. Both frequentist and Bayesian schools have weighed in on the
matter, with methods such as F' tests for nested models, AIC, Mallows C,, exhaustive
search, stepwise, backward and forward selection procedures, cross—validation, Bayes
Factors of various flavors (partial, intrinsic, pseudo, posterior), BIC, Bayesian model
averaging, to name some of the more popular and well-known methods. Some of these,
such as stepwise selection, are algorithms for picking a “good” (or maybe useful) model;
others, for example AIC, are criteria for judging the quality of a model.

Given this wealth of choices, how is a statistician to decide what to do? An approach
that cannot be implemented or understood by the scientific community will not gain
acceptance. This implies that at the very least we need a method that can be carried
out easily and yields results that can be interpreted by scientifically and numerically
literate end—users. From a statistical point of view, we want a method that is coherent
and general enough to handle a wide variety of problems. Among the demands we could
make on our method would be that it obeys the likelihood principle, that it has some
frequentist (asymptotic) justification, and that it corresponds to a Bayesian decision
problem. Naturally, not all of these desiderata can be met at once, and this paper will
do little to influence the ongoing discussion of their relative importance. An attempt
to bring coherence to the field from a decision-theoretic perspective was given by Key,
Pericchi and Smith (1999). For an entertaining and readable look at the subject of
Bayesian model selection from the scientist’s perspective, we recommend the article by
MacKay (1992). We aim to give a more general overview.

2 Why Choose a Model?

Before getting into a review of methods of how to choose a model, it is important to
address the question of “why?” At heart we think that the reasons are pragmatic, having
to do with saving computer time and analyst attention. Viewed this way, however, there
is no particular reason to choose a single best model according to some criterion. Rather
it makes more sense to “deselect” models that are obviously poor, maintaining a subset
for further consideration. Sometimes this subset might consist of a single model, but
sometimes perhaps not. Furthermore, if it is indeed the case that model choice is driven
by consideration of costs, perhaps these can be included explicitly into the process via
utility functions, as suggested by Winkler (1999). Hence we think there are good reasons



to challenge the traditional formulations of this problem.

3 A Conceptual Framework

Consider the following general setting. Suppose there are K models, indexed by £,
with prior probabilities 7, parameters 6y € €y, likelihoods f(x|6)) and priors g (6y) for
k=1...K. We are in the M-closed framework of Bernardo and Smith (1994), that is,
we assume that one of the K models is the “truth” (or, at least, a reasonable enough
approximation thereof that we would be willing to use it in practice). This in itself is
a somewhat controversial outlook, positing as it does not only that a true model exists,
but that it is one of those under consideration. However, it is a helpful stance for at least
thinking through the ramifications of a true Bayesian model selection procedure and
the qualities we would wish to demand of it (see also Petrone, 1997; Piccinato, 1997).
The posterior on the model M = k and 6 is proportional to fi(x|0k)gk(0k)7k, and the
posterior probability of M =k is

P(My|z) o< 7k Jo, fie(]0k) gr(0k)dOs (1)
;T(k fﬂk fi(]0k) g1 (01 )d0y ©)
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In a full Bayesian analysis, the priors 7 on each model and g (6y) on the parameters
of model k are proper and subjective. Another important element of the full Bayesian
paradigm is the utility, or loss, function. The first question to ask is what the contem-
plated decision space is, that is, among what set of decisions is the choice to be made?
As discussed in Section 2, the traditional decision space for model choice is to choose one
of the K models, but we suggest there that it might be more faithful to most applied
problems to consider choosing a subset of {1,..., K} instead.

In addition to the space of decisions, utility functions also depend, in general, on
the parameter space, which here consists in full generality of an indicator of a model,
and all the fs. Many of the methods to be considered have utilities that depend only
on 6 if model k is under consideration; some do not depend on # at all. Finally, a full
specification includes the functional form of the utility function. For a method to be
useful, that utility function should represent how a statistician thinks about the model
choice she confronts. This idea is developed to some extent by Key, Pericchi and Smith
(1999), for the so—called M-open perspective, in which it is desired to evaluate a set of
models, none of which is believed to be true. Their approach, as mentioned previously,
is decision—theoretic, taking explicit account of the utilities involved. On the other hand,
they use only improper, “objective” priors, in their analyses and as such deviate from a
purely Bayesian procedure (as pointed out by Bayarri, 1999).

The Bayesian proposal is then to make the decision that maximizes expected utility,
where the expectation is taken with respect to the posterior distribution of M and #.
It is from this perspective that we wish to evaluate the various schemes and criteria



for model selection. In particular, one question of interest is how close do the different
methods come to this framework. In a similar vein, insofar as some of the techniques
are approximations, how close are these approximations to a coherent Bayesian model
selection?

Variations on this perspective are possible, even from the Bayesian point of view.
While some practitioners, such as Raftery, Madigan and Hoeting (1997) emphasize pos-
terior distributions, others focus instead on predictive distributions, as in Box, 1980;
Gelfand and Dey, 1994; Laud and Ibrahim, 1995.

4 Bayesian Model Selection

4.1 Bayes Factors — Variations on a Theme

Returning to the conceptual framework from Section 3, recall equation (2) for the pos-
terior probability of model Mj; the posterior odds for model M, is therefore

P(Myg|x
Odds(Mj|z) = s (3)
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In particular, when K = 2,

ouani = () (3 asmiosin)

The first factor is the prior odds for model 1; the second is called the Bayes Factor,
written B . The Bayes Factor has been the subject of much discussion in the literature
in recent years; see the review by Kass and Raftery (1995) and the references therein,
for a summary of the issues, although it should be noted that even within the last five
years, there have been new developments in the area.

Despite its popularity, the Bayes Factor is relevant only in limited circumstances.
Namely, the statistician (or scientist) is required to choose one particular model out of
the two available and there must be a zero—one loss on that decision. The meaning of the
second requirement is that if the statistician makes the wrong decision, it doesn’t matter
how far off the choice is; this is contrary to the way that statisticians think about most
problems. Kadane and Dickey (1980) show that Bayes Factors are sufficient if and only
if a zero—one loss obtains.

When K > 2, (4) simplifies to

Tk

J 170

In other words, the odds for the £ model is a function of the Bayes factor of that model
with every other model. The prior probabilities 7,75, ..., 7k on the models do not
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come out of the sum. As contrasted with the case of inference, where often in practice
the choice of prior is not crucial, for model selection, the prior continues to play a role,
even asymptotically.

A similar phenomenon arises also within each model. Take the simple case where
K = 2, working with a zero—one loss, and assume that model 1 has no parameters at all.

Then
5. _ fi(z)
B f2(x|02)g2(02)dbs’

which depends importantly on the prior over the alternative space, go(f2). An example is
instructive. Consider the simple case where the first model for the data is normal, with
mean 0 and variance 1, and the second model is normal, with mean # and variance 1.
Suppose that the mean of the data is 0.3. Priors on 6 are proper and normal. Depending
on where the prior for # is centered, the Bayes factor might lead us to change our opinion
about which model should be favored. In other words, the decision we make will be
heavily influenced by the prior, even for a large sample. The Bayes factor is not robust
to the specification of prior, even when the prior is proper. If the prior g,(fs) is allowed
to be improper, it can be made to fit the data arbitrarily poorly, making model 2 unlikely
no matter what the data turn out to be. This is the Jeffreys-Lindley paradox (Jeffreys,
1961; Good, 1950; Lindley, 1957; Shafer, 1982, among others). As a response to this
paradox, Jeffreys proposed a Cauchy form for go(6s), with equal prior probability on
both models, and a normal likelihood.

Phenomena such as the Jeffreys-Lindley paradox, the dependence of the Bayes factor
on the specified priors and the difficulties of calculating and interpreting the Bayes factor
at all when improper priors are put on the parameters of the models, have led some
authors to seek automatic Bayesian methods for model selection. According to Berger
and Pericchi (1996), who advocate this position, automatic methods are essential because
the statistician will often, at least initially, consider a wide range of models, for which it
won’t usually be feasible to specify all priors subjectively (on this point, see also Laud
and Ibrahim, 1995). On the other hand, as Lindley (1997) argues, impropriety (and
“objective” priors, such as so—called “reference” and “noninformative” priors are often
improper) rarely occurs in practice. In this perspective, with which we agree, a parameter
is more than just an abstract mathematical construct; instead, it corresponds (at least we
hope it does!) to something real, and, if the statistician were to think about the reality
underlying the parameter, she should always be able to describe it reasonably well using
a proper distribution. As Lindley (1997) phrases it, “It is unfortunately all too easy to
slap on an improper prior and avoid having to think about drugs or yields.... the problem
[with improprieties| is not mathematical at all. It lies in the reality that is conveniently
forgotten. Improper distributions in model choice have no sensible interpretation.” (p.
187).

No doubt the controversy will continue. Both the objective and the subjective schools
of prior specification are a part of the statistical landscape and their proponents will con-
tinue to develop methodologies for the critical activity of model selection. Many proposals




have been made from the advocates of objective or noninformative priors, as a way of
avoiding the difficulties associated with the dependence of Bayes factors on the priors in
general, and with vague priors in particular. Berger and Pericchi (1996), for example,
define the intrinsic Bayes factor. Divide the data into two parts, a training sample and a
testing sample. On the training set, convert the (improper) prior distributions to proper
posterior distributions. Compute the Bayes factor using the testing data, and the poste-
rior distributions from the training set as the new priors. Letting x(l) denote a minimal
training set, and x(—[) the rest of the sample, a Bayes factor can be defined as

o m;(x(=1)|z(1))
Bz](l) m](aj(—l”x(l)),

where my(z(—[)|z(l)) is the marginal density of the remainder of the sample, using the
prior calculated from the training set. An important point is that the training set cannot
increase with the sample size; rather, a minimal training sample needs to be found. For
a given data set, there will be many minimal training samples (made up of different
combinations of the data points); the intrinsic Bayes factor can be calculated for each
one, and then an average of these, either arithmetic or geometric, is taken, yielding the
arithmetic intrinsic and geometric intrinsic Bayes factor, respectively. Further modifi-
cations of these Bayes factors, such as the trimmed and median variants, are possible;
see Berger and Pericchi (1996). A version of the geometric intrinsic Bayes factor is an
approximate Bayesian solution to the well-posed decision problem, from within the M—
open perspective, of selecting a model, on the basis of which a terminal action will be
taken (predicting a single future observation), with a particular utility attached (Key,
Pericchi and Smith, 1999).

What is intrinsic about the intrinsic Bayes factor? Berger and Pericchi (1996) give
the following motivation. Suppose we have data X; which are iid N(u,o?) under the
model M,, whereas under M, they are N(0,0%). Possible noninformative priors for
the two models are 1/0? for My (the Jeffreys prior) and 1/0 for M, (this is the standard
noninformative prior for the normal problem). Minimal training sets are any two distinct
observations. Jeffreys (1961) proposed using the standard noninformative prior for the
variance, but argued for the use of a Cauchy (0,0?) conditional prior for y given o2
for M,. The intrinsic Bayes factor analysis gives results that are very similar to those
obtained using the Cauchy prior in Ms. In general, the argument is that intrinsic Bayes
factors reproduce Bayes factors based on “sensible” noninformative priors. However,
since we question whether noninformative priors can ever really be sensible, we are still
left with the question “What is intrinsic about intrinsic Bayes factors?”

If the data set is large, there will be many minimal training sets over which to average,
making the Berger and Pericchi approach rather cumbersome. An alternative is suggested
by O’Hagan (1995) in the form of the fractional Bayes factor. Let m denote the size of
the training sample, n the size of the entire data set, and b = m/n. For large m and n,
the likelihood based on the training set only will approximate the likelihood based on all



of the data, raised to the b power. Define
By(x) = my(b, x)/my(b, x),

where
. [ 9i(0;) fi(x|0;)db;

J 9:(0:) fi(0;)°d;"
By(z) is the fractional Bayes factor. Note that the motivation for the fractional Bayes
factor is asymptotic (in m and n), although O’Hagan proposes it more generally for all
sizes of data set.

Fractional Bayes factors have several desirable properties in common with ordinary
Bayes factors, that are not, however, shared by intrinsic Bayes factors (O’Hagan, 1997).
The fractional Bayes factor satisfies the likelihood principle, whereas intrinsic Bayes fac-
tors don’t. Invariance to transformations of the data is another property of fractional
Bayes factors which is not always enjoyed by the intrinsic version. When the two models
being compared aren’t nested, the arithmetic intrinsic Bayes factor is not well-defined,
because the researcher needs to determine which model is more complex. Using an en-
compassing model, in which both candidates are nested, doesn’t always solve the problem.
O’Hagan further shows that there can be difficulties with the minimal training sample
— for some problems the minimal training sample requires the use of all or most of the
data, in which case the intrinsic Bayes factor cannot discriminate between models.

In response to the critique by O’Hagan (1997) and another, along similar lines, by
Bertolino and Racugno (1997), Berger and Pericchi (1998) advocate the use of the median
intrinsic Bayes factor, which, they claim, may not be optimal for all situations, but is “a
good IBF in virtually any situation, ...” (Berger and Pericchi, 1998, p. 2). There are
two versions of the median intrinsic Bayes factor. The first is the median over training
samples (instead of an arithmetic or geometric mean, take a median), that is

m; (b, x)

with B;;(l) defined as above. The second is a ratio of medians,

med[m; (z(=1)|z(1))]
med[m;(x(—1)|z(1))]

RM _

Note that B{}M doesn’t have to correspond to a Bayes factor arising from one of the
training samples (the sample which gives the median value in the numerator might not
be the same as the sample which yields the median value in the denominator). Berger and
Pericchi argue that Bj and B satisfy many of the desiderata outlined by O’Hagan
(1997) and, in addition, are stable in a variety of situations where the arithmetic intrinsic
Bayes factor fails.

Taking the general idea of splitting the data into a training set and a testing set
to an extreme, Aitkin (1991) defines the posterior Bayes factor, by replacing the prior
distribution g¢;(6;) with the posterior distribution g;(6;|z) in the definition of the Bayes
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factor. In effect, this compares the posterior means under the two models and uses the
entire data set as the training sample. This method is open to a number of criticisms,
not the least of which is using the data twice, once to compute the posterior (to be
used as a prior) and once to calculate the Bayes factor. Furthermore, as pointed out by
Lindley (1991) in his discussion, use of the posterior Bayes Factor can lead to paradoxes
in inference. The method does not correspond to any sensible prior, nor is it a coherent
Bayesian procedure (Goldstein, 1991; O’'Hagan, 1991).

Consideration of Bayes Factors also leads to two of the more common criteria used for
model selection — the Bayes Information Criterion (or BIC) and the Akaike Information
Criterion (or AIC). The Schwarz criterion is defined as

§ = 10g fu(alfy) — Tog fo(elfs) — 5 (dh — do) log(n),

where ék is the maximum likelihood estimator under model k, dj is the dimension of 6,
and n is the sample size (Schwarz, 1978). Minus two times this quantity is the BIC.
Asymptotically, as the sample size increases,

S — IOg 312
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thus the Schwarz criterion gives a rough approximation to the logarithm of the Bayes
factor, without having to specify the priors g;(;) (Kass and Raftery, 1995). However,
even for very large samples exp(S) is not equal to Bis, as the relative error tends to
be of order O(1). That is, the approximation does not achieve the correct value of the
Bayes factor. Kass and Raftery (1995) note, though, that the Schwarz criterion should,
for large samples, give an indication of the evidence for or against a model.

The AIC is given by AIC=-2(log maximized likelihood)+2(number of parameters); as
a model selection criterion, the researcher should choose the model that minimizes AIC
(Akaike, 1973). One justification for the AIC is Bayesian (Akaike, 1983), namely, that
asymptotically, comparisons based on Bayes Factors and on AIC are equivalent, if the
precision of the prior is comparable to the precision of the likelihood. This requirement
that the prior change with the sample size is unusual asymptotics, and furthermore is
usually not the case. Rather, the data tend to provide more information than the prior.
In this situation, the model which minimizes BIC=-2(log maximized likelihood)+(log
n)(number of parameters) has the highest posterior probability. As can be seen by
comparing the expressions for AIC and BIC, these two criteria differ only by the coefficient
multiplying the number of parameters, in other words, by how strongly they penalize large
models. In general, models chosen by BIC will be more parsimonious than those chosen
by AIC. The latter has been shown to overestimate the number of parameters in a model
(see, for example, Geweke and Meese, 1981; Katz, 1981; Koehler and Murphree, 1988).
It’s also worth pointing out that, even though AIC has a Bayesian justification, nowhere
does a prior appear in the expression for the criterion itself.

Smith and Spiegelhalter (1980) study the relation between the ordinary Bayes factor
and selection criteria such as AIC and BIC in the setting of nested regression models.



Denote by s the vector of regression coefficients unique to the encompassing model,
that is, the parameters which are in the larger model, but not in the smaller model.
The choice of prior on (35 is crucial in the form of the Bayes factor. Letting the matrix
of additional (assumed orthogonal) columns in the encompassing model be X5, Smith
and Spiegelhalter consider priors on (3», given the error variance o2, that have covariance
matrix of the form o?p(n)(X4X;)~". Minus twice the logarithm of the approximate Bayes
factor obtained from priors of this sort is of the type

A(m) =A— m(d2 - dl),

where m = %—l—logp(n), A is the likelihood ratio test statistic and dy —d; is the dimension
of fB,. Taking p(n) to be e'/? leads to AIC, and other values could just as easily be
chosen. As p(n) increases, support for the simpler model also rises. When the elements
of X1 X, are of order n for large n, the choice p(n) = n corresponds to taking a fixed
prior, with variance that does not shrink with n. Under this setting, we get BIC, since
m = log(n). AIC and BIC represent the extremes of taking p(n) to be constant (in n)
and taking p(n) = n. Looking at the criteria in this way, it is obvious that other choices
for p(n), which would impose different penalties on the larger model, are possible and
perhaps desirable.

4.2 Bayesian Model Averaging

When working with Bayes factors, the decision space involves the choice of a model, or
possibly several models, which are then used for inference or prediction. If the chosen
model is only one of many possibilities, the statistician runs the risk that model uncer-
tainty will be ignored (Draper, 1995). In this light, it makes sense to look at the panoply
of models and the inferences or predictions they would give. A formal Bayesian solution
to this problem, as outlined in the conceptual framework posed in the opening sections,
was proposed by Leamer (1978). Suppose there is a quantity of interest, denoted A; the
posterior distribution of this quantity, given the data is

P(Alz) = kE_: P(A[My, z) P(Mg|z).

This is a weighted average of the posterior probabilities of A under each model, where
the weights are given by the posterior probabilities of the models in question. Raftery,
Madigan and Hoeting (1997) call this approach Bayesian model averaging (Draper, 1995,
does not use this specific terminology, but advocates the same idea). As pointed out
by those authors, averaging over all models increases predictive ability, compared to
basing conclusions about A on any of the single models under consideration; however,
the process itself can be very difficult, since it often involves integrals that are hard to
evaluate, and the number of terms in the sum (that is, the number of models, K) may
be too large to be easily handled.



The latter problem can be tackled by using the Occam’s window algorithm for
Bayesian model averaging (Madigan and Raftery, 1994). Based on two common-sense
principles of model selection, namely (1) that if a model predicts the data much worse
than the best model, it should be dropped from further consideration and (2) that models
that predict the data less well than any of their nested submodels should be discarded,
this algorithm often drastically reduces the number of models that need to be considered
in the average. Now, the problem is one of finding the class of models to be included in
the average. Occam’s window compares at each step two models, where one model, call it
My, is a submodel of the other, M;. Look at the logarithm of the posterior odds for Mj;
if this is positive (or, in general, greater than some set constant), that is, the data give
evidence in favor of the smaller model, reject Mj; if it is negative but small, consider both
models, since there isn’t enough evidence one way or another; if it is negative and large,
then reject M, from further consideration. If M, is rejected, so are all of its submodels.
Using either an “up” or a “down” procedure to move around the space of all possible
models, models are eliminated, until the set of potentially acceptable models to go into
the averaging is found.

MCMC model composition (Madigan and York, 1995) is another approach for evalu-
ating P(A|z). A Markov chain is built on the model space, with stationary distribution
P(M;|x), and steps through it are taken by moving in a small neighborhood of the current
model. More specifically, the neighborhood of a model consists of all those models with
one variable more or one variable less than the one under consideration at a given stage
of the chain. Transition probabilities are defined such that the probability of moving to
a model outside of the neighborhood is zero, and the probability of moving to a model
within the neighborhood is the same for all models in the neighborhood. If the chain is
currently at state My, then we need to draw a model M}, from the neighborhood.

The model averaging method described by Raftery, Madigan and Hoeting (1997) uses
flat priors over the range of “plausible” values of the parameters. Further, for some of
the parameters the priors are data dependent, involving both the dependent and the
independent variables from a linear regression model. In that sense, their approach is
only an approximation to the fully Bayesian analysis that would be achieved by the use
of subjective priors. Elicitation of expert opinion (see, for example, Kadane, Dickey,
Winkler, Smith and Peters, 1980; Garthwaite and Dickey, 1992; Kadane and Wolfson,
1998) is a feasible way of obtaining proper, subjective priors to incorporate into the model
averaging procedure. As shown by Key, Pericchi and Smith (1999), model averaging is
also a solution to a well-posed Bayesian decision problem from the M—closed perspective,
specifically, that in which a terminal decision is made directly (for instance, predicting a
new observation).

Although our focus is not on computation, it is worth noting that several other
schemes have been developed for the calculation of posterior probabilities over model
spaces of varying dimension. In particular, the reversible jump approach (Green, 1995;
Richardson and Green, 1997) has been gaining popularity in Bayesian circles in recent
years. Chib (1995) proposes an alternative method, which is based on the computation
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of marginal likelihoods, and hence allows the computation of Bayes factors as well. See
also Carlin and Chib (1995) and Carlin and Polson (1991).

For the regression problem, Mitchell and Beauchamp (1988) propose a Bayesian ap-
proach to variable selection. They place “spike and slab” priors on each of the coefficients
in the regression equation, ¢.e. a point mass on 3; = 0 for each j, with the rest of the
prior probability spread uniformly over some defined (and large) range. In a similar
vein, George and McCulloch (1993) describe a Gibbs sampling technique for “stochas-
tic search variable selection” in regression, which selects promising subsets of variables.
George and McCulloch suggest embedding the problem in a hierarchical Bayes normal
mixture model, with latent variables to identify subsets. Models with high posterior
probabilities are picked out for additional study by the procedure. The prior on 3; is a
two—component normal mixture, with each component centered about zero, and having
different variance. A latent variable determines to which component 3; belongs. In con-
trast to Mitchell and Beauchamp’s prior, no point mass is placed on zero. Denoting the
latent parameter by -;, the prior is

Bilvi ~ (L =%)N(0,77) + 7 N(0,677).

The latent variable is equal to 1 with probability p;. In this formulation, the statistician
needs to devote some thought to the values of 7; and ¢;. The former should be small, so
that if ; = 0, ; is small and might be closely estimated by zero. On the other hand,
¢; should be large. Thus if 7; = 1, a non-zero estimate of ; would lead to including
this variable in a model. Under this interpretation, p; can be thought of as the prior
probability that variable 5 should be in the model.

Building on the work of George and McCulloch, Kuo and Mallick (1998) also explore
the use of Markov Chain Monte Carlo to identify models with high posterior probability.
Where the former build a hierarchical model, Kuo and Mallick start from a regression
equation that embeds all models within it. Taking 7; to be the indicator for the j
variable being in the model, the regression for subject 7 is written as

p
i = D BiviTij + €
7=1

When ~; = 1, predictor j is included in the model and when ~; = 0, we omit predictor
j. Standard priors are assumed on the parameters — normal for the vector of coefficients,
inverse gamma for the variance of the errors, and the v; are independent Bernoullis. Note
that in this formulation, the prior on f;v; is a mixture — it has a point mass at 0 with a
certain probability, and the rest of the mass is normally distributed. Instead of a “spike
and slab” prior, we have a “spike and bell.” Therefore, as in Mitchell and Beauchamp
(1988), a privileged position is given to the particular hypothesis that §; = 0. The
posterior distribution of the vector of indicators is supported on each of the 2”7 submodels,
and gives a measure of the probability of each. In this way, it is possible to evaluate the
models and consider the ones with highest posterior probability. The model with the
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highest posterior probability corresponds to a Bayes decision rule with zero—one loss (see
also discussion of Bayes factors). Calculation of the posterior distributions is via Gibbs
sampling.

4.3 Predictive Methods

The framework proposed in Section 2 looks at the posterior probability assigned to each
model. Alternatively, it should be possible to look at the predictions from the various
models. Now the question of interest shifts slightly, from “Which models best explain
the observed data?” to “Which models give the best predictions of future observations
generated from the same process as the original data?” Ideally, we would like to compare
predictions and choose the model which gives the best overall predictions of future values.
However, we don’t know these “future values” — if we did, we could just use them directly.
Most predictive methods, then, use some sort of jackknife approach, under the assumption
that future observations from the process that generated the data would be similar to
those actually in the sample. That is, the data are assumed to be exchangeable. This
is the idea behind the “quasi-Bayes” approach of Geisser and Eddy (1979), a blend of
Bayesian and sample-reuse ideas. For each model, compute the likelihood as the product
of “predicting densities”, that is, the density of the j* observation, calculated on the rest
of the data with the j observation deleted, under a specific model (this gives a predicted
value for observation j based on the rest of the data). The model for which this likelihood
is maximized is chosen as the most suitable of those models being considered.

San Martini and Spezzaferri (1984) give a different twist on the predictive approach
to model selection, defining their criterion in terms of utility. Here, priors on the models
and the parameters are incorporated. They define an average criterion, which, like those
of Akaike and Schwarz, corrects the likelihood ratio statistic by taking account of the
differences in model dimension. It differs from other similar criteria in that it also ac-
counts for the distance between two models. Assume that the models under consideration
are My, ..., Mg, py is the probability that model M} is true and pi(y) is the predictive
density of a future observation y based on the model M. Now let u(p(x),y) be a utility
function for choosing the density p(x) as the predictive distribution of y (the unknown
future observation). The procedure picks the model whose expected utility is the largest.
If there are two models, for example, the first will be chosen if

Eilu(pi(x),y) — u(pa(*), y)lpr > Ea[u(p2(*),y) — u(pi(x), y)]p2,

expectations F; being taken with respect to the predictive distribution p;(x). In addition,
San Martini and Spezzaferri (1984) show that their criterion fits into the framework
of Smith and Spiegelhalter (1980), with a penalty term that increases as the distance
between the two models (as measured by the likelihood ratio statistic) increases.

A predictive version of a general Bayesian model selection framework is given in
Gelfand and Dey (1994). Observed (independent) data are z1, ..., x,, which under model
M have likelihood f(x|6;). For simplicity, Gelfand and Dey restrict attention to the case
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where only two models are being considered; as they point out, comparisons are generally
done pairwise, so nothing is lost by this. Denote by S,, the index set {1,2,...,n} and
let S be a subset of S,,. Define

n

L(Oxlas) = T f(xil6n)?,
i=1
where d; is the indicator for ¢ € S. As before, we denote the prior for 6, under model
My, by gx(6k). For prediction purposes, Gelfand and Dey propose consideration of the
conditional density

f(xs,|vs,, M) = [ L(O|xs,)gr(Ok]2s,)d0s
[ L(0k|ws)) L(Ok | 5,) gk (0k)dO
o [ L0k |z5,) 9k (0x ) dO

This conditional density is a predictive density; it averages the joint density of g, with
respect to the prior gi (), updated by zg,. Both S; and S, are taken to be subsets of S,
and different choices correspond to predictive techniques in the Bayesian literature. For
instance, S; = {r} and Sy, = S — {r} gives the Geisser and Eddy (1979) cross—validation
density and hence the pseudo—Bayes factor

Hf(xr|xra Ml)/Hf(xr|xr7 MZ)

S1 = Sy = S results in Aitkin’s (1991) posterior predictive density and the posterior
Bayes factor. When S5 is a minimal subset and S; = S — S5, we can obtain the different
versions of the intrinsic Bayes factor.

Gelfand and Ghosh (1998) also adopt a predictive outlook to model selection, building
on the observation by Kadane and Dickey (1980) that Bayes factors correspond to a 0
1 loss. Other loss functions are possible, and they base their method on the idea of
evaluating models by comparing observed data to predictions. For each model, minimize
the expected posterior loss over all possible predictions of replicates of the data, where
the replicates are assumed to have the same distribution as the observed data; then,
choose the model for which this minimum is minimized. Note that in this framework,
as opposed to our general outline of the model selection process, there is no notion of
one of the models being “true”; furthermore, there are no priors assigned to the models
themselves.

The goal of this approach is to obtain good predictions for replicates of the observed
data, but at the same time to be faithful to the observed values. In order to attain this
objective, a loss of the general form

L(yrepa a; yobs) - L(yrepa a) + kL(yobsa a)

for £ > 0 is proposed, where y,s are the observed data, y,., are the replicates to be
predicted (assumed to come from the same distribution as the observed data) and a is
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the “action” or estimate. The action is a compromise between the observation and the
prediction, with the weight, £k, expressing how important it is to be close to y.s, relative
to Yrep. Gelfand and Ghosh show that for a range of models and appropriate choices of
the loss L(y,a), the form above results (asymptotically or approximately) in a goodness
of fit term plus a penalty term, similar to criteria such as AIC and BIC.

Let’s consider a simple example in more detail; this example is given in Gelfand and
Ghosh (1998) and we repeat it here to highlight the essentials of the method, which is
somewhat different in spirit than others we have considered so far. Take

n

Dk(m) = Z rr(]i]l'n Eyl,rep|yobsme(yl7rep7 al; yObs);
=1

m represents the model relative to which calculations are carried out. For the general
form of the loss described above, this becomes

Dk(m) = Z H}l‘}n{Eyl,rep‘yobsme(ylzreI” al) + kL(ylaOb's’ al)}'
=1

For a fixed a;, and L(y,a) = (y — a)?, the ["* term in this sum is
o + (a — pu)? + k(ar = Yions)?s

where 012 is the variance of y;,, given yops and m, and yy is the expected value of v ,ep
given ¥y, and m; in both of these we have suppressed the dependence on the model in
the notation for simplicity.

The minimizing a; is (k+1) (1 + kyiops). If this is inserted back into the expression
for Dy(m), the result is

k n n
Dk(m) =71 Z(Ml - yl,obs)2 + ZUZQ

=1 =1

The first summand can be thought of as a goodness—of-fit measure (how close are the
predictions to the observed data) and the second is a type of penalty term. If y, comes
from a normal distribution, the first term is equivalent to the likelihood ratio statistic
with p; replacing the MLE of the mean of ;. Extending the example, suppose that
y comes from a normal linear model. Put as a prior on the parameters 5 a N(up, X)
distribution. If the prior is very imprecise, that is, ¥ is large, then y,.,|yops has an
approximate N(X 3,02l + X(XTX) ' XT]) distribution. The two summands in Dj(mn)
become (again, approximately) (y — XB)T(y - XB) and o%(n + p).

As pointed out in Gelfand and Ghosh (1998), this is one example where the calculation
of Di(m) can be explicitly made. In general, however, a combination of asymptotic
expansions and Monte Carlo simulation for the evaluation of integrals will need to be
employed.
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5 Frequentist Approaches to Model Selection

5.1 Techniques

Classical statistics has also dealt extensively with the problem of model selection. Every
introductory book on regression analysis, for example, contains chapters on ways of
choosing among competing models. In contrast to most of the Bayesian methods, classical
approaches generally have had to focus on the comparison of nested models, as non—
nested models are usually difficult to treat. Much of model choice in the classical setting
is based on the principle of extra sums of squares, that is, comparing the residual sums
of squares from models with and without particular sets of variables. Valid comparisons
can be made for models that differ in that, in the smaller model, some of the parameters
(coefficients on the variables) in the larger model are set to zero. In contrast, when using
various criteria for model selection (as in the next section), models can be compared
without being nested.

The various stepwise procedures, in which we include also forward selection and back-
ward elimination, are among the most popular and widespread techniques. They all
provide systematic ways of searching through models, where at each stage new models
are obtained by adding or deleting one variable from the models at the previous stages.
While these techniques originated for regression models to aid in the variable selection
problem, they can also be applied in settings that extend the basic linear model, such
as generalized linear models (Lawless and Singhal, 1978; Hastie and Pregibon, 1992),
contingency tables (Agresti, 1990) and graphical models (Whittaker, 1990); for these
other types, residual sum of squares would be replaced by deviance or other relevant
measures. We frame our discussion in the regression context, with the understanding
that the search philosophy can be used in other settings as well.

With forward selection, start with the null model and, one at a time, consider variables
for inclusion in the model. At the first step, include the variable that makes the biggest
individual contribution, assuming that the F'—test for a model with that variable versus
the null model is greater than a predetermined threshold. At each step the procedure
continues in this way, adding in the variable that has the largest effect given the variables
already in the model, if its F' statistic is above the cutoff. When there is no candidate
variable that meets the criterion, the algorithm stops. Another option is to set in advance
the size of the largest model to be considered, and stop the procedure when that point
is reached (Draper and Smith, 1981).

Backward elimination is similar, but moves in the opposite direction. That is, starting
with the full model, at each step consider eliminating the variable with the least effect on
the model, given that the other variables are included. Again, a predetermined threshold
for dropping variables from the model decides whether or not the candidate will indeed
be taken out. When no candidates for removal meet the criterion, stop.

In both forward selection and backward elimination, once a variable has been acted
upon, that decision cannot be reversed. Hence, a variable that was eliminated at some
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point during a backward procedure, for example, will never be allowed back in to the
model. This lack of flexibility is remedied in the stepwise approach to variable selection.
Here, at each step variables are considered for inclusion and for elimination. In other
words, a variable might be included in an early stage, but taken out later; or, a variable
that was taken out of the model might be allowed back in.

While these procedures are widely used and readily available in most statistics pack-
ages, they should be used with care. Since none of the stepwise regression methods
correspond to a specific criterion for choosing a model (Weisberg, 1985, p. 211), the
selected model need not be optimal (that is, there is no guarantee that the “best” model
will be chosen). Indeed, working on the same data set, the forward selection and back-
ward elimination might not result in the same final model (Graybill, 1976). Due to the
way that the algorithms work, furthermore, not all models will even be looked at. The
lack of clear criterion for model choice makes it difficult to see how these procedures fit
at all into our general Bayesian framework, or, indeed, into a frequentist approach, since
they each involve a complex sequential testing strategy with a dynamically changing null
hypothesis.

An alternative to stepwise regression is to do an exhaustive search across all models
and in such a fashion to find subsets of the variables that yield a good model, according
to some criterion (see below for a discussion of possible choices). These are usually used
as a starting point for further study. This approach, even with advances in computing
power and memory, as well as the development of algorithms that allow the user to avoid
calculating most of the models (for instance, Furnival and Wilson, 1974), is feasible
mostly when the number of variables is moderate. In any case, exhaustive search over all
possible models is usually naive — the statistician or the scientist often has ideas about
which candidate models make substantive sense.

5.2 Criteria for Subset Selection

As described above, the exhaustive search, or all possible regressions, compares mod-
els according to a specific criterion. Those models that perform well according to the
chosen criterion may be considered for a more in—depth investigation. Over the years,
many criteria have been suggested. Some of them, such as AIC and BIC, have already
been discussed. They have a role in classical model choice no less than in the Bayesian
counterpart.

Most of the popular criteria for model selection are readily computed as byproducts
of the ordinary regression calculations, but don’t necessarily have counterparts in other
common model settings; hence this section discusses only the problem of variable selection
in regression. R?, for instance, is defined as the ratio of the sum of squares for regression
to the total sum of squares, 3 (y; — #)>. The problem with using this measure as a
criterion, specifically for comparing models of different sizes, is that the sum of squares
for regression, and hence R? itself, increases the more variables there are in the model.
For this reason, an adjusted version of R?, which takes into consideration the number of
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parameters in the model, is usually used instead. It is defined to be
(n—1)

R, =1-—
dj (n—p)

(1 - R2)7

where n is the sample size and p is the number of variables in the model (including the
intercept term).
A related criterion is the C, statistic (Mallows, 1973),

C, = RSS,/6% + (2p — n),

with RSS, the residual sum of squares for a model with p terms, and 62 the estimate of
the error variance based on the full model. C,, is closely related to RZ, (Kennard, 1971).
A number of features of this statistic make it useful for model comparison. For a model
that fits the data adequately, E(C,) is approximately p, and therefore C,, itself should
be approximately equal to p for an adequate model (of which there may be several in a
given problem). For the full model, with, say k& parameters, this holds exactly, that is,
Cy = k. The criterion can clearly be used for comparing subsets of the same size, but
it can also be used more generally, by looking for those models for which C, ~ p. The
purpose of C), is to guide the researcher in the process of subset selection (Mallows, 1995;
George, 2000); choosing the model that minimizes the criterion and then estimating the
parameters of the model via least squares, although a widespread practice, is prone to
selection bias and should be avoided (Mallows, 1995; the problem is that the common
procedure does not account for the fact that the selected subset depends on the observed
data). See the discussion of the Risk Inflation Factor, below, for more on this question.

One of the motivations for the C), statistic is as an estimate of the mean square error
for prediction. It is possible instead to use cross—validation to get such an measure.
Delete observation i for each of i = 1,...,n and fit the regression model with the i**
observation deleted. Using the fitted values, it is possible to obtain a “prediction” for
the deleted point, which can be compared to its actual value. The difference in the two
is sometimes called the deleted residual. The sum of the squared deleted residuals is the
predicted residual sum of squares, PRESS (Allen, 1974). Good models will have small
values of this criterion. Similar thinking drives the pseudo-Bayes method of Geisser and
Eddy (1979) discussed previously. It is important to note that, at least in theory, one
needs to go through the procedure on each of the models being considered, which could
be a computational burden if the number of models is large.

5.3 Modern Frequentist Developments

As in the Bayesian world, refinements and innovations on frequentist procedures con-
tinue to appear (George, 2000). New criteria, such as the risk inflation criterion (Foster
and George, 1994; Donoho and Johnstone, 1994) and the covariance inflation criterion
(Tibshirani and Knight, 1999) have been proposed within the last decade. Advances
in computation have created new opportunities, with the now—standard cross—validation
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and bootstrap (Efron, 1979, 1982; Stone, 1974) as well as more exotic procedures such
as the “little bootstrap” (Breiman, 1992), the nonnegative garrote (Breiman, 1995) and
the lasso (Tibshirani, 1996) coming into play.

Foster and George (1994) note that the variable selection problem in regression is
actually a two stage process — first, a “best” subset of predictors is selected, and then
the coefficients of the chosen subset are calculated by least squares. The second stage
proceeds as if the predictors are known to be the correct ones, rather than having been
chosen. The Risk Inflation Criterion, or RIC, is defined to be the maximum possible
increase in risk due to selecting the variables in the model, as opposed to knowing which
the “correct” ones are. The inflation comes from comparing the risk of the fitted model
to the risk of the ideal model which uses only the “right” variables. RIC turns out to
be related to other criteria we have already encountered, such as AIC, C, and BIC, the
difference being in the penalty it imposes on the dimensionality of the model — 2logk,
where £ is the dimension of the full model, using all predictors. This same penalty was
arrived at by Donoho and Johnstone (1994) for a wavelet model choice problem. The
covariance inflation criterion (Tibshirani and Knight, 1999) has a similar motivation. It
is a criterion for model selection in prediction problems, whereby a model is chosen based
on a training set of data to find the best predictor of future data. The method adjusts
the training error by the average covariance of the response and the predictors, when the
model is applied to permutations of the original data set.

Some of the other more recent developments in the area — the little bootstrap, the
nonnegative garrote and the lasso, mentioned above, also take advantage of advances in
computing power. Breiman’s (1995) nonnegative garrote grows out of an attempt to keep
the strengths of both subset selection and ridge regression. The advantage of the former
is that it does select out variables; however, it is highly unstable, in that small changes
in the data set can lead to very different models. Ridge regression, on the other hand, is
very stable, but does not eliminate any variables, leading to possibly cumbersome models
that are (or can be) hard to interpret. Again, in the linear model setting, let Bl be the
original least squares estimates of the coefficients, and take ¢; to minimize

Z(?Jj - Z Czﬂiﬂ%)z

] 2
subject to the constraints that ¢; > 0 for all 7 and that )}, ¢; < s. By decreasing s, more
of the ¢; become zero, and the ones that don’t are shrunk, thereby also shrinking the
remaining parameter estimates, BAZ(S) — ¢;3;. This “garrote” is relatively stable, while
eliminating some variables from consideration. It tends to lead to larger models than
ordinary subset regression, but on the other hand it is, in many instances, more accurate
(in terms of prediction). The “little bootstrap” (Breiman, 1992) or cross-validation
(Stone, 1974; Efron, 1982) can be used to estimate the value of the garroting parameter,
S.

A similar idea is captured by Tibshirani’s lasso (1996), which chooses ;s to minimize
> (w5 = > Biwiy),

2

J
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under the constraint that 3, |5;] < s. Here, s controls the amount of shrinkage. As
noted by Tibshirani, a main difference between the lasso and the garrote is that the
latter modifies the ordinary least squares estimates, and hence its behavior is, at least in
part, dependent on theirs. In contrast, with the lasso there is no explicit use of the least
squares estimates. Tibshirani also offers a Bayesian interpretation of the lasso estimates,
as the posterior mode under independent double-exponential priors on the fs.

6 Conclusions

An endeavor as basic to the pursuit of science as model choice and selection is bound
to generate a plethora of approaches. Bayesian and classical statisticians have both put
forth proposals for solving this most difficult and interesting of problems. With such a
wealth of methods, it can be difficult, as we have argued, for a researcher to know what
is the “proper” way to proceed.

The unifying conceptual framework we proposed is an attempt to bring order to
this often chaotic field. From this perspective, a “model” is just a discrete parameter
in a larger super-model. Model averaging, with proper priors, provides a principled
and coherent Bayesian approach to the problem at hand. Regarding other Bayesian
techniques, such as the various flavors of Bayes factors, while they may be solutions to
specific decision theoretic problems, as described in Key, Perrichi and Smith (1999), they
are more narrow in focus and in applicability. Indeed, applicability of the “default prior”
methods, embodied in intrinsic and fractional Bayes factors, needs to be checked on a
case by case basis (Berger and Perrichi, 1997) and in that sense they don’t necessarily
offer an advantage even over frequentist methods.

Frequentist approaches to model selection of course do not fit neatly into the proposed
Bayesian framework, and suffer from the lack of a guiding principle. New methods are
developed apparently on ad hoc grounds. To be fair, many of the so—called objective
Bayesian techniques also seem to us to be derived more as a response to something
else not working, than from proper Bayesian considerations, and this is perhaps not
coincidental. Objective Bayesians try to avoid the discomfort of selecting a subjective
(proper) prior, that is, they hope to “have their Bayesian cake and eat it too.”
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